Quadrature.hpp File Reference

Templates for the quadrature of functions that do not depend on any grid functions. More...

#include "gaussweights.hpp"

Include dependency graph for Quadrature.hpp:


Functions

template<typename T, class Integrand>
Midpoint_Integrate (Integrand &integrand, int index, double *xi, int n_points)
 The auxiliary recursive function for Midpoint_Integrate.
template<typename T, class Integrand>
Midpoint_Integrate (Integrand &integrand, double *xi, int n_points=1)
 Integration of a scalar function using the summation midpoint rule.
template<typename T, class Integrand>
Midpoint_Integrate (Integrand &integrand, int index, double *xi, int n_points[])
 The auxiliary recursive function for Midpoint_Integrate.
template<typename T, class Integrand>
Midpoint_Integrate (Integrand &integrand, double *xi, int n_points[])
 The quadrature routine.
template<typename T, class Integrand>
Trapezoidal_Integrate (Integrand &integrand, int index, double *xi, int n_points)
 The auxiliary recursive function.
template<typename T, class Integrand>
Trapezoidal_Integrate (Integrand &integrand, double *xi, int n_points=1)
 Integration of a scalar function using the summation trapezoidal rule.
template<typename T, class Integrand>
Gauss_Integrate (Integrand &integrand, int index, double *xi, int n_points)
 The auxiliary recursive function.
template<typename T, class Integrand>
Gauss_Integrate (Integrand &integrand, double *xi, int n_points=1)
 Integration of a scalar function using the Gaussian quadrature.

Detailed Description

Templates for the quadrature of functions that do not depend on any grid functions.

The integral to compute:

\[ \int_\Omega f (x) dx, where \ \Omega = [0, 1]^d. \]

All the quadrature procedures are implemented as templates depending on the class 'Integrand' that specifies 'f'. If possible, 'f' should be implemented as an inline function. The class should contain the following fields:

Date:
Nov. 22, 2005 - created

Function Documentation

template<typename T, class Integrand>
T Gauss_Integrate ( Integrand &  integrand,
double *  xi,
int  n_points = 1 
) [inline]

Integration of a scalar function using the Gaussian quadrature.

Parameters:
[in] integrand The integrand
[in] xi A buffer for the coordinates
[in] n_points Number of the gaussian points in every direction

template<typename T, class Integrand>
T Gauss_Integrate ( Integrand &  integrand,
int  index,
double *  xi,
int  n_points 
) [inline]

The auxiliary recursive function.

Parameters:
[in] integrand The integrand
[in] index Number of the index
[in] xi The coordinates
[in] n_points Number of the gaussian points in every direction - 1

template<typename T, class Integrand>
T Midpoint_Integrate ( Integrand &  integrand,
double *  xi,
int  n_points[] 
) [inline]

The quadrature routine.

Parameters:
[in] integrand The integrand
[in] xi A buffer for the coordinates
[in] n_points Array of numbers of the points in every direction

template<typename T, class Integrand>
T Midpoint_Integrate ( Integrand &  integrand,
int  index,
double *  xi,
int  n_points[] 
) [inline]

The auxiliary recursive function for Midpoint_Integrate.

Parameters:
[in] integrand The integrand
[in] index Number of the index
[in] xi The coordinates
[in] n_points Array of numbers of the points in every direction

template<typename T, class Integrand>
T Midpoint_Integrate ( Integrand &  integrand,
double *  xi,
int  n_points = 1 
) [inline]

Integration of a scalar function using the summation midpoint rule.

Parameters:
[in] integrand The integrand
[in] xi A buffer for the coordinates
[in] n_points Number of the points in every direction

template<typename T, class Integrand>
T Midpoint_Integrate ( Integrand &  integrand,
int  index,
double *  xi,
int  n_points 
) [inline]

The auxiliary recursive function for Midpoint_Integrate.

Parameters:
[in] integrand The integrand
[in] index Number of the index
[in] xi The coordinates
[in] n_points Number of the points in every direction

template<typename T, class Integrand>
T Trapezoidal_Integrate ( Integrand &  integrand,
double *  xi,
int  n_points = 1 
) [inline]

Integration of a scalar function using the summation trapezoidal rule.

Parameters:
[in] integrand The integrand
[in] xi A buffer for the coordinates
[in] n_points Number of the points in every direction

template<typename T, class Integrand>
T Trapezoidal_Integrate ( Integrand &  integrand,
int  index,
double *  xi,
int  n_points 
) [inline]

The auxiliary recursive function.

Parameters:
[in] integrand The integrand
[in] index Number of the index
[in] xi The coordinates
[in] n_points Number of the points in every direction - 1


Generated on Fri Sep 21 12:33:43 2007 for SG2 by  doxygen 1.5.2